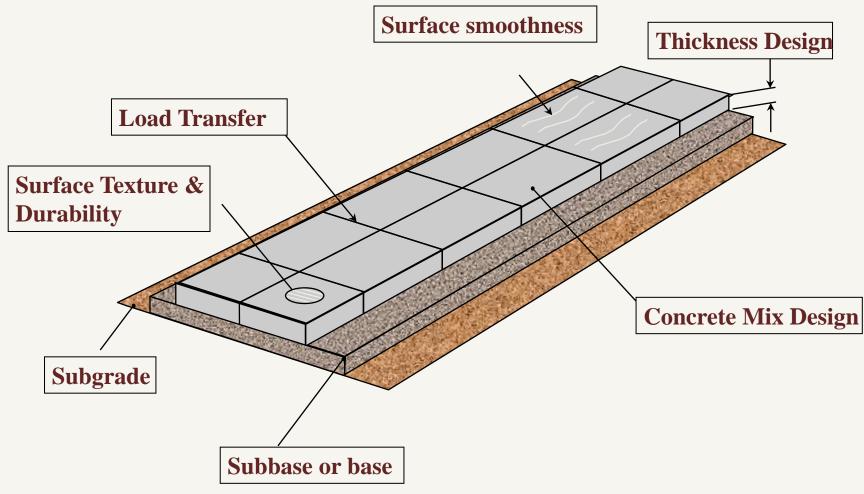


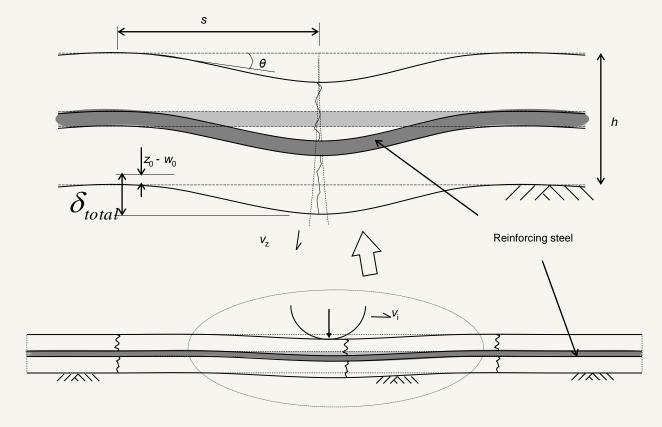
Base Design Considerations for Jointed Concrete

- Dan G. Zollinger, Ph.D., P.E.
- Texas A&M University, College Station, TX, USA

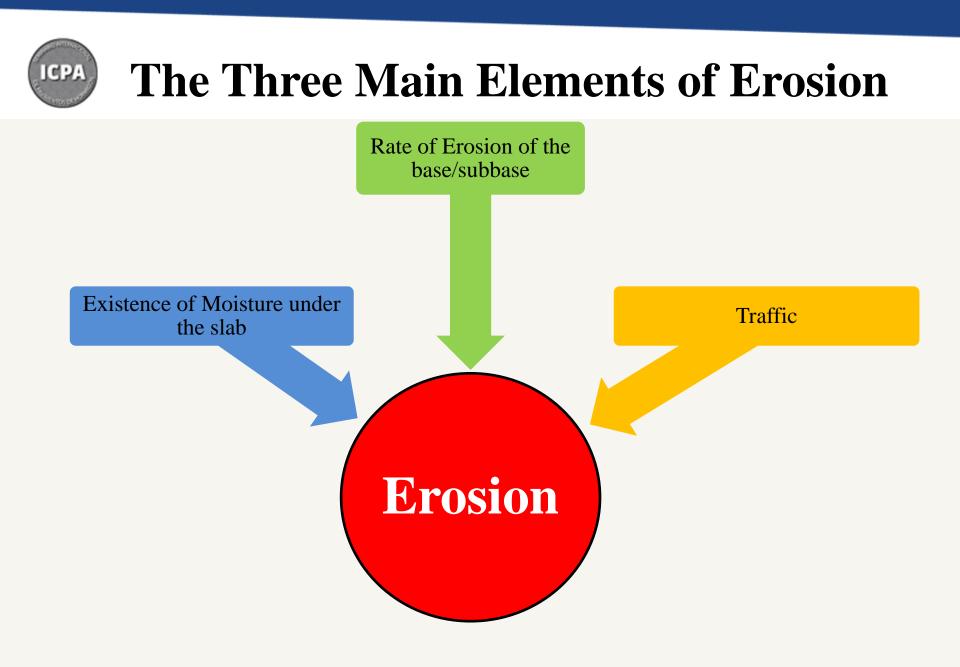
X CONGRESO INTERNACIONAL ITS X SIMPOSIO DEL ASFALTO


II SEMINARIO INTERNACIONAL DE PAVIMENTOS DE HORMIGÓN

www.congresodevialidad.org.ar

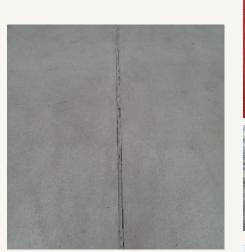


- \checkmark What is Erosion
- ✓ Effects on Performance
- ✓ Erosion Testing
- ✓ Use of Erosion In Design
- ✓ Field Assessment of Erosion



 $Ba\sin Area = \frac{SS}{2*\delta_0} \Big[\delta_0 + 2\big(\delta_1 + \delta_2 + \dots + \delta_{j-1}\big) + \delta_j \Big]$

Faulting Distress

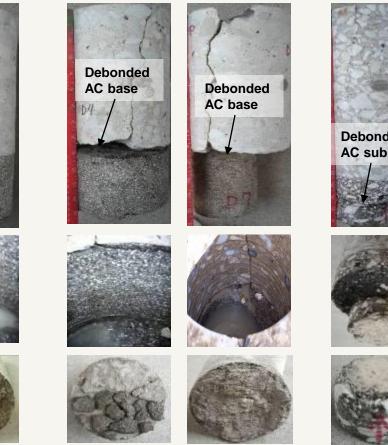


The Role of Moisture

Debonded

AC base

AC base bottom



D 2

AC base bottom

Section 1

US 81/287 - Cores

AC base bottom

AC base bottom

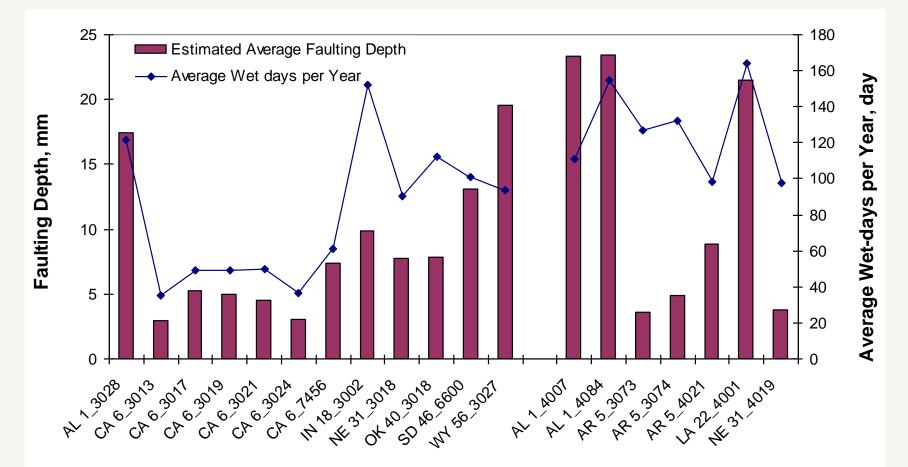
Section 2

AC subbase top

Section 3

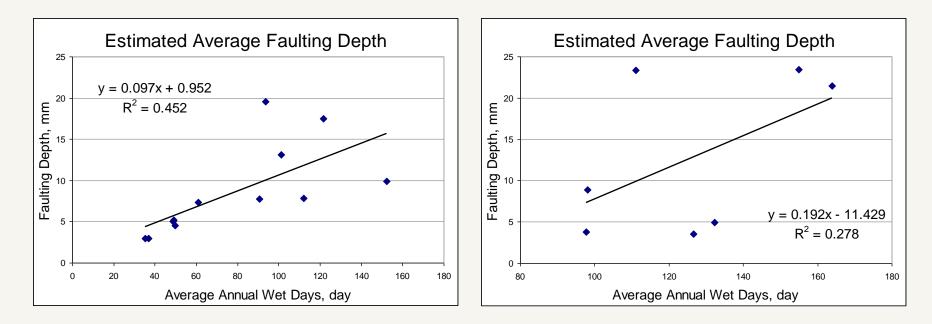
Jointing and Sealing Practices

- Making an initial saw cut to control cracking
- Making a second saw cut to create a reservoir for joint sealant
- Cleaning and preparing the reservoir faces
- Placing a backer rod in the reservoir, to keep the sealant from adhering to the bottom of the reservoir and to create a curved bottom surface for the sealant.
- Placing sealant material in the reservoir


LTPP Faulting Data Sections

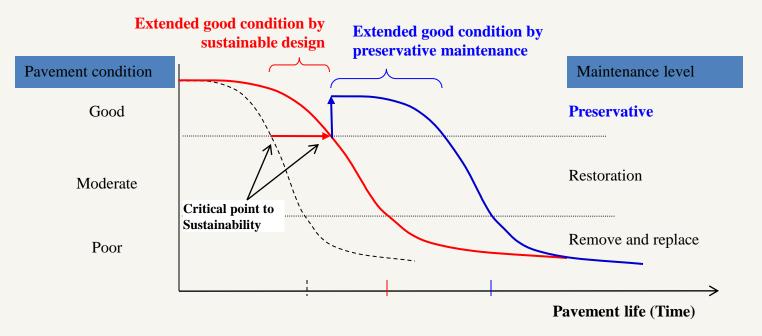
Northwest Territories GPS-1 Alberta Manitoba Quebec GPS-68 GPS-68 GPS-68 GPS-60 GPS-68 GPS-68 GPS-68 GPS-70 GPS-770 GPS-770 GPS-770 GPS-770 GPS-770 GPS-770 GPS-776	LTPP DataPave Online Your Access to the World's Largest Pavement Performance Database Select By Location						
GPS-75	Zoom All Northwest Territories Alberta VA Saskatchewang VA MT OR D W A NV VA VA VA VA VA VA VA VA VA VA VA VA VA	Manitoba Or UD Manitoba Cr UD MIN MIN MIN MIN MIN MIN MIN MIN MIN MIN		Quebec	GPS-1 GPS-2 GPS-3 GPS-4 GPS-5 GPS-6A GPS-6A GPS-6B GPS-6C GPS-6C GPS-6C GPS-7A GPS-7A GPS-7A GPS-7C GPS-7C GPS-7C GPS-7F GPS-7R		

State and Section ID	Pavement Type	
AL 1_3028	JPCP	
CA 6_3013	JPCP	
CA 6_3017	JPCP	
CA 6_3019	JPCP	
CA 6_3021	JPCP	
CA 6_3024	JPCP	
CA 6_7456	JPCP	
IN 18_3002	JPCP	
NE 31_3018	JPCP	
OK 40_3018	JPCP	
SD 46_6600	JPCP	
WY 56_3027	JPCP	
AL 1_4007	JRCP	
AL 1_4084	JRCP	
AR 5_3073	JRCP	
AR 5_3074	JRCP	
AR 5_4021	JRCP	
LA 22_4001	JRCP	
NE 31_4019	JRCP	


Estimated Average Faulting Depth

Wet days in LTPP database is defined as the number of days for which precipitation was greater than 0.25 mm for year

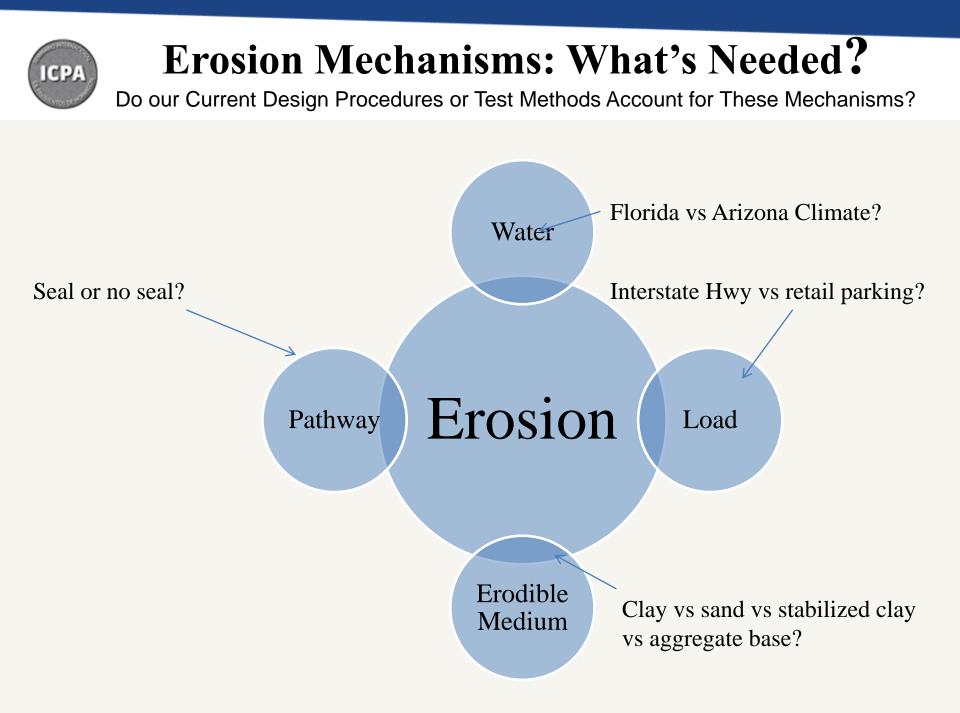
Faulting and Number of Wet days


JPCP Sections

JRCP Sections

Average faulting depth is estimated at the 100 million ESAL repetitions based on LTPP faulting data

Sustainability of Pavement



Reduce slab deflection by improving

- Slab thickness
- Joint/crack load transfer
- Subbase and subgrade support

Sustainable Pavement Design

PCA Method

Empirical erosion model based on outdated highly erodible subbase type in the AASHO Road Test

$$\log N = 14.524 - 6.777(C_1 P - 9.0)^{0.103}$$

Percent erosion damage = $100\sum_{i=1}^{m} \frac{C_2 n_i}{N_i}$

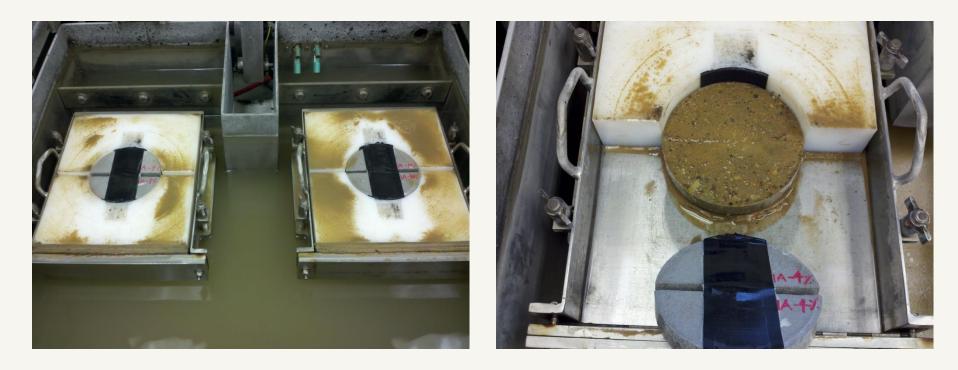
Where, N = allowable number of load repetitions based on a PSI of 3.0 $C_1 =$ adjustment factor (1 for untreated subbase, 0.9 for stabilized subbase)

$$\frac{p}{hk^{0.73}} = \frac{p^2}{hk^{0.73}}$$

- p = pressure on the foundation under the slab corner in psi, p = kw
- k = modulus of subgrade reaction in psi/in
- w = corner deflection in in
- h = thickness of slab in in
- m = total number of load groups
- $C_2 = 0.06$ for pavement without concrete shoulder, 0.94 for pavements with tied concrete shoulder
- n_i = predicted number of repetitions for *i*th load group
- N_i = allowable number of repetitions for *i*th load group

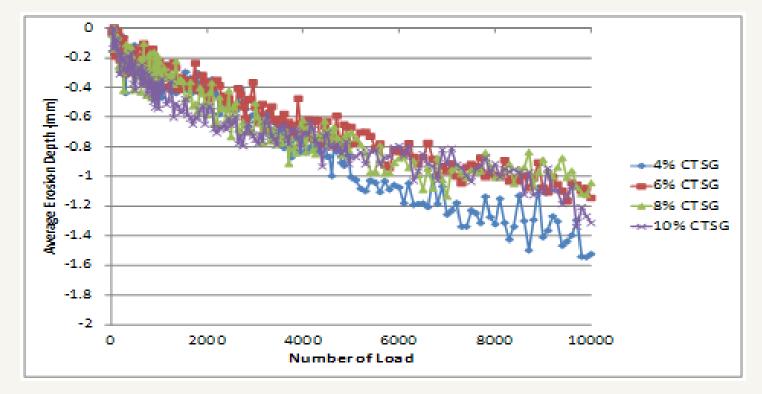
AASHTO MEPDG

Included to faulting model by 5 classes of erodibility п based on percent of stabilizer and compressive strength

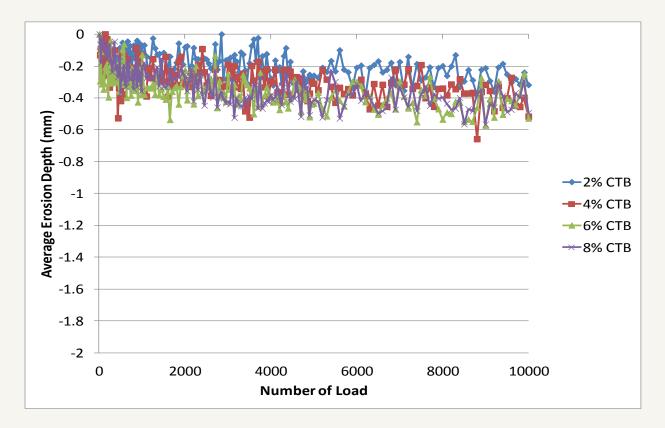

 $FAULTMAX_{i} = FAULTMAX_{0} + C_{7} * \sum_{i=1}^{m} DE_{i} * Log(1 + C_{5} * 5.0^{EROD})^{C_{6}}$

$$FAULTMAX_{0} = C_{12} * \delta_{curling} * \left[Log(1 + C_{5} * 5.0^{EROD}) * Log(\frac{P_{200} * WetDays}{P_{s}}) \right]^{C_{6}}$$

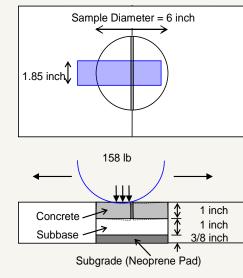
Where FAULTMAXi = maximum mean transverse joint faulting for month i, in FAULTMAX0 = initial maximum mean transverse joint faulting, in = base/subbase erodibility factor EROD DEi = differential deformation energy accumulated during month i C_{12} $= C_1 + C_2 * FR_{0.25}$ = calibration constants C_i FR = base freezing index defined as percentage of time the top base temperature is below freezing (32 °F) temperature Scurling = maximum mean monthly slab corner upward deflection PCC due to temperature curling and moisture warping Ps = overburden on subgrade, lb = percent subgrade material passing #200 sieve P200 = average annual number of wet days (greater than 0.1 in rainfall) WetDays

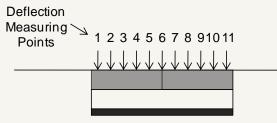


Hamburg wheel-tracking device (HWTD)


Erosion Results – CTS

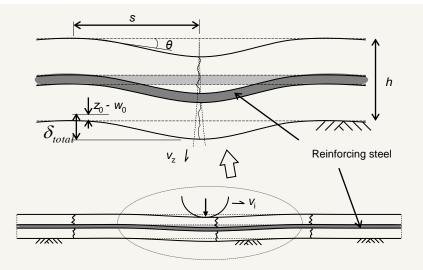
HWTD erosion Test on cement treated subgrade


Erosion Results – CTB



HWTD erosion Test on cement treated base

Erosion Test and Shear Stress Model



 $\tau_p = \chi \tau_b + (1 - \chi) \tau_u$ $=\frac{V_{s}\left\{1-\left[\frac{2(h_{c}-x_{na})}{h_{i}}\right]^{2}\right\}}{h_{i}b\frac{E_{base}}{E_{c}}}$ $\tau_i =$ $= \left(\frac{\partial \delta_{L_i}}{\partial X}\right) - \frac{E_{sb}}{2(1+\nu)} \left(\frac{1}{\chi}\right)$

 $f_e = (1 - \% E) \left[(1 - P(\sigma_n > 0)) f_c + f_F \right]$

Consideration of Erosion In Design

- Damages the Slab/Subbase Interface
- Lowers Friction
- Reduces Composite
 Slab Thickness
- Reduces k-Value
- Increases Stress
 - Bending Stress
 - Shear: Loss of LT

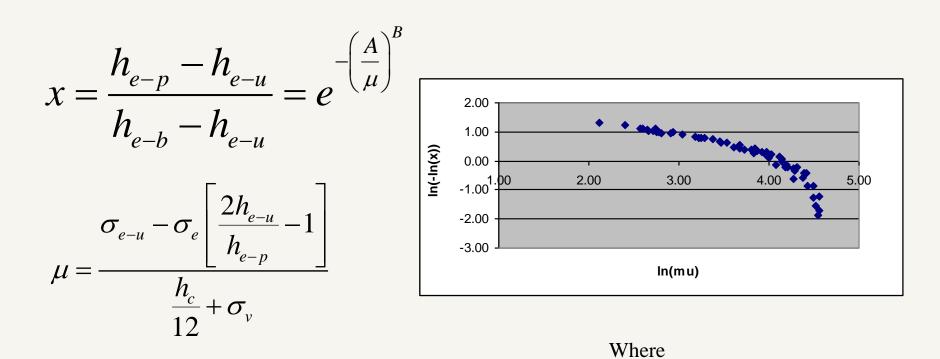
Partially Bonded System

$$h_{e-p} = \frac{h_{e-u}}{2}(1-x) + (x)h_{e-b}$$

$$x = e^{-\left(\frac{A}{\mu}\right)^{m}} (x = \text{degree of bond}; \mu = \text{coeff. of friction})$$
Notes on $h_{e,p}$:

$$1)\ell_{e}^{4} = \frac{E_{e}h_{e-p}^{3}}{12(1-v^{2})k}; h_{e,p}^{3} = \ell_{e}^{4} \frac{12(1-v^{2})k}{E_{e}} = h_{e}^{3}; \ell_{e}^{4} \text{ derived from basin area}$$

$$\sigma_{e}$$


$$Transformed Section$$

$$3) \sigma_{e-p} = \sigma_{e-u} - \tau_{f}; \sigma_{e-u} = \frac{s_{e-u}P}{h_{e-u}^{2}}; \tau_{f} = \mu\left(\frac{h_{e}}{12} + \sigma_{v}\right); \sigma_{v} = \text{ load induced pressure}$$

$$4) \text{ and } \sigma_{e-p} = \sigma_{e}\left[\frac{2(h_{e-u} - \overline{y}_{p})}{h_{e-p}}\right] = \sigma_{e}\left[\frac{2(h_{e-u})}{h_{e-p}} - 1\right]$$

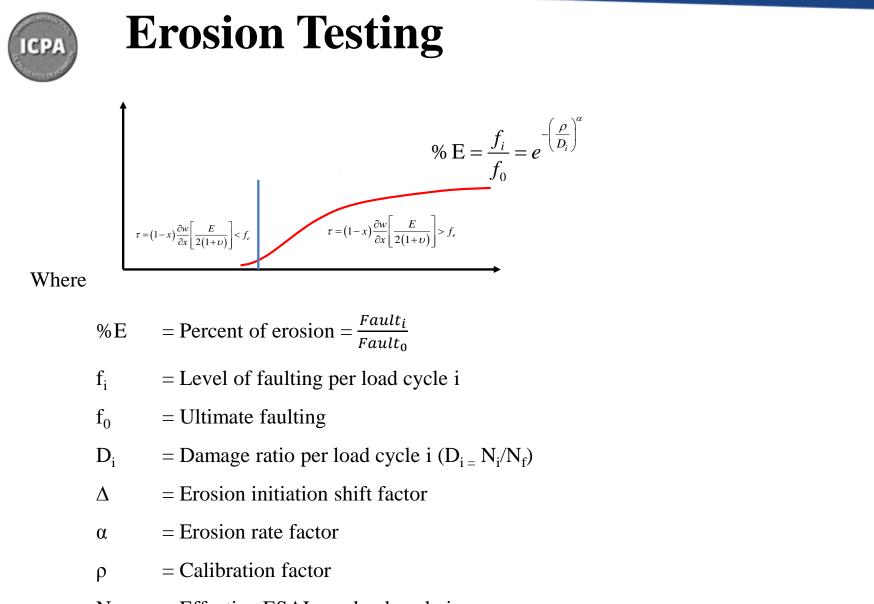
Equivalent Interlayer Friction

Where

$$\sigma_{\rm e} = \frac{s_e P}{h_e^2}; \ s_e = a + b\ell_e + c\ell_e^2 \ \text{(for FWD plate loading)}$$

P = Applied FWD load (F)
a, b, c =
$$0.0006$$
, 0.0403 , and -0.0002 (for FWD plate loading)

$$n_c = Concrete slab thickness (L)$$

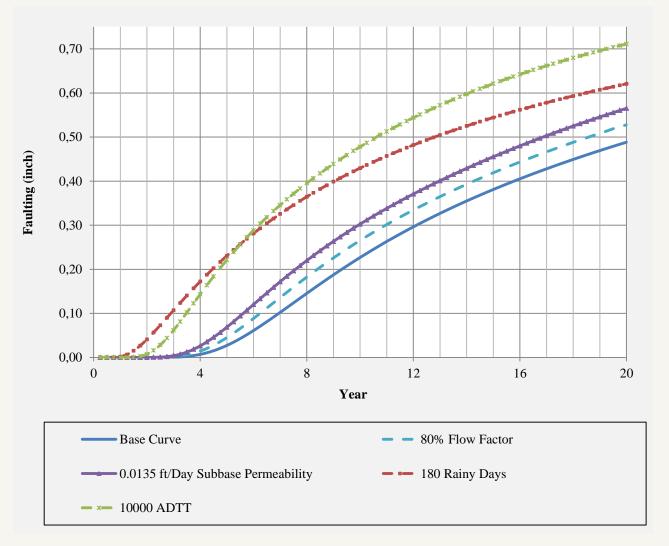

$$\sigma_v$$
 = Load induced vertical pressure (FL⁻²) ($\approx 0.7 \text{ psi}$)

$$= e^{\frac{1.232 - 0.065\mu}{B}}$$

= $-(0.039y^2)$
= $Ln(\mu)$

Α

B


y

 N_i = Effective ESAL per load cycle i

Erosion-Based Design Process

- Determine Traffic
- Base Cohesive Strength
- Calc Shear Stress
- Estimate NWD
- Determine Erosion Damage
- Determine Interlayer Frictional Resistance and Reduced k-Value
- Determine Composite Thickness
- Determine Loss of LT
- Determine Bending Stress

Erosion Model

% E =
$$\frac{f_i}{f_0} = e^{-\left(\frac{\rho}{D_i}\right)^{\alpha}}$$
; D= $\frac{\sum N}{N_f}$; N_f = 10^{k_1+k_2r}; r= $\frac{\tau}{f_{\tau}}$

Where

- &E = Percent of erosion
- f_i = Level of faulting per load cycle i
- f₀ = Ultimate faulting
- D_i = Damage ratio per load cycle i $(D_{i=N_i/N_f})$
- Δ = Erosion initiation shift factor
- α = Erosion rate factor
- ρ = Calibration factor
- N_i = Effective ESAL per load cycle i

Presence of Moisture

Damage,
$$D_i = \sum \frac{N_i}{N_f} \times (\% \text{ Wet Days})$$

 N_i = Effective ESAL

$$N_W = P\% * 365$$

$$P\% = p_1 * p_2 * (1 + p_3)$$

P% is a adjustment factor that contains three factors :

 p_1 : Probability of the Rain (# of wet days/ 365)

 p_2 : Surface Inflow Factor

 p_3 Subbase Drainage Factor

Interlayer Friction Model

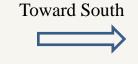
$$f_{e} = (1 - \% E) \left(\left[(1 - \operatorname{Prob}(\sigma_{n} > 0)) f_{c} + f_{F} \right] \right]$$

$$\sigma_{n} = \sigma_{0} - f_{t}; \ \sigma_{0} = \frac{3w}{S^{2}} (\ell_{e} - \ell) k \ell_{e}$$

$$f_{c} = \text{ cohesive or shear strength}; f_{F} = q \tan \phi$$

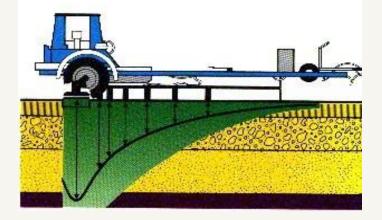
$$\% E = \frac{f_{i}}{f_{0}} = e^{-\left(\frac{\rho}{D_{i}}\right)^{\alpha}}$$

$$h_{e-p} = \frac{h_{e-u}}{2} (1 - x_{e}) + (x_{e}) h_{e-b}$$


2

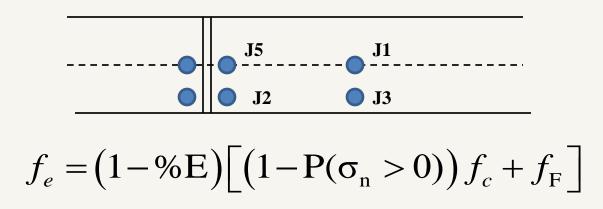
Field Evaluation of Erosion Damage

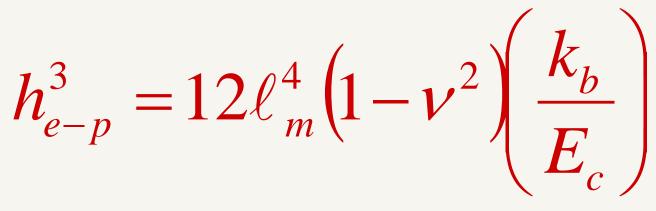
- Flow Tests (Infiltration Test) \geq
- Ground Penetration Radar (GPR) \geq
- Falling Weight Deflectometer \succ (FWD)
- Core Samples \succ



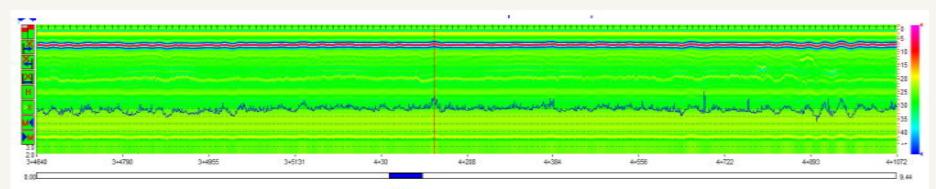
TS 3 TS 2 TS 1 Hot Pour Sealants Silicone (Poor Condition) Unsealed

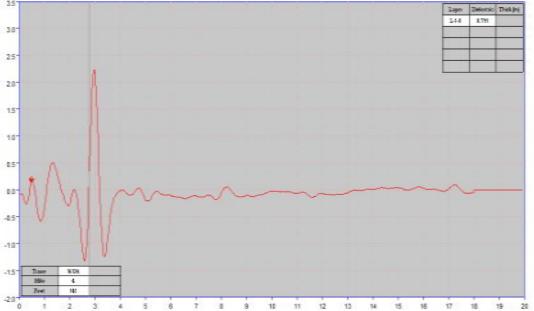
ICPA


Falling Weight Deflectometer (FWD)

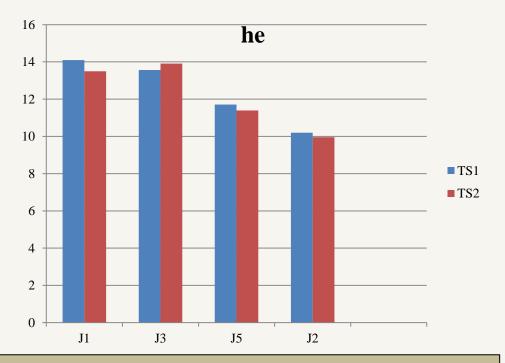

Drops on :

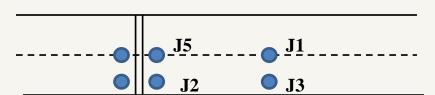
- Joints (Approach Slab and Leave Slab)
- Center of the Slab
- Edges and Corners


Equivalent Thickness


- $\begin{array}{ll} h_{e\text{-p}} & \Rightarrow Equivalent \ Thickness \\ & & \Rightarrow Measured \ Value \\ & & & & \\ k_b & \Rightarrow Back-calculated \end{array}$
 - \Rightarrow Based on Cores

 E_{c}



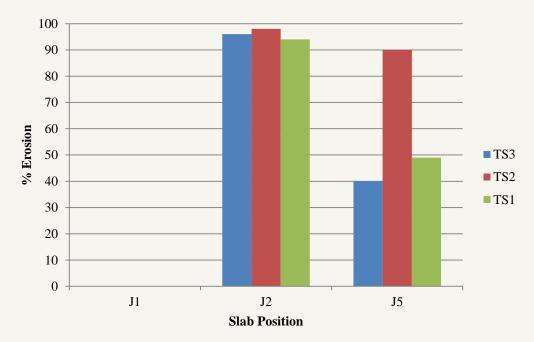


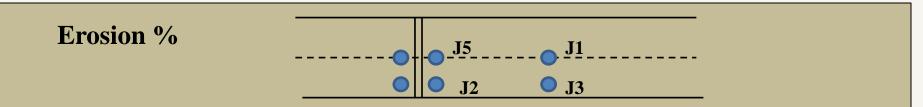
Erosion Results – h_e

TS1 Afternoon Read						
Position J1 J3 J5 J2						
he	14.10	13.57	11.71	10.20		

TS 2 Afternoon Read						
Position J1 J3 J5 J2						
he 13.50 13.91 11.39 9.96						

Falling Weight Deflectometer (FWD)




Erosion Results –%E

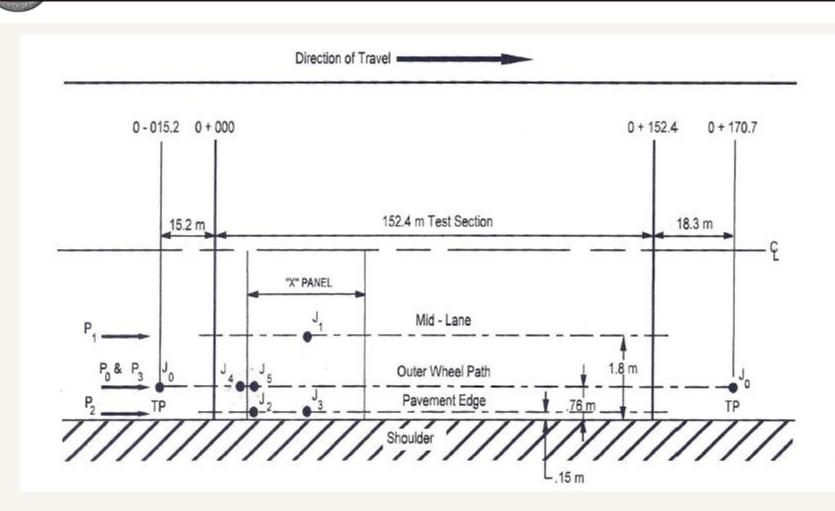
TS3					
Position	J1	J2	J5		
Erosion %	0	96	40		

TS2					
Position	J1	J2	J5		
Erosion %	0	98	90		

TS1					
Position	J1	J2	J5		
Erosion %	0	94	49		

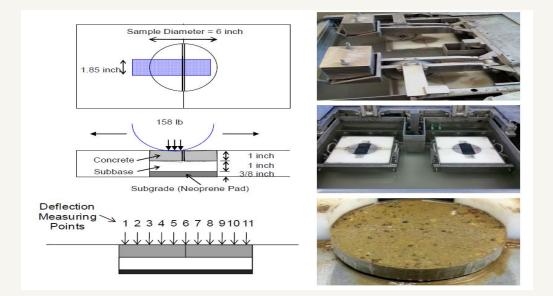
Erosion Results – CRC

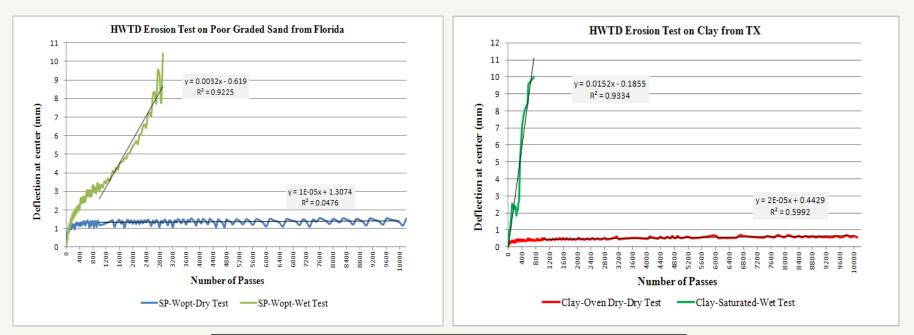
Table 2 Erosion Analysis Results.


	h _e	μ _e	P(<u>σ</u> _>0)	щ	μt	%E
w/o	302mm	32.5	15%	41.7	4.8	10%
fabric	(11.9")					
w/fabric	226mm	1.54	75%			89%
	<mark>(</mark> 8.9")					

Conclusions

- Erosion leads to loss of support and faulting
- Subbase shear strength is key to erosion resistance
- Field evaluation reveals that slab corners and edges are susceptible to erosion
- Considering erosion effects may also help to avoid overly conservative designs and better material/traffic combinations


FWD Testing Pattern


 $f_e = \left(1 - \% \mathbf{E}\right) \left[\left(1 - \mathbf{P}(\sigma_n > 0)\right) f_c + f_F \right]$

Hamburg wheel-tracking device (HWTD)

- Subbase material 25.4 mm (1 in.) thick placed on a neoprene
- Jointed concrete block 25.4 mm (1 in.) thick.
- A wheel load of 71.6 kg (158 lb) is applied at a 60-rpm load frequency
- Measurements consist of the depth of erosion Vs the number of passes

	Material	Material Moisture	Test	Erodibility
Material	Location	When Tested	Condition	(mm/million passes)
SP	FL	Optimum	Wet	3200
Clay	TX	Saturated	Wet	15200

$$k_b = \frac{w_0^* P}{w_0 \ell_e^2}$$

Where P W₀

= wheel load (F) = center plate deflection (L)

$$w_0^* = \frac{1}{8} \left[1 + \left(\frac{1}{2\pi}\right) \left(\ln\left(\frac{a}{2\ell_e}\right) + \gamma - 1.25 \right) \left(\frac{a}{\ell_e}\right)^2 \right]$$

(center of slab loading)