

Road Materials and Mixture Design to prevent Permanent Deformation- Rutting

Hussain U. Bahia, PhD University of Wisconsin–Madison

November 5th, 2014, Buenos Aires, Argentina

Rutting: The most damaging Pavement Failure **1. Mechanism** 2. Modeling **Binder Testing** 3. **Mixture Testing** 4. **Imaging and Micro** 5. structure

Mechanics of Permanent Deformation for Rutting Modeling

*Kim, R. Modeling of Asphalt Concrete (2009)

MODIFIED

RESEARCH CENTER

MARC

Mechanisms of Rutting: Volume and Shape changes

Factors Affecting Rutting

- 1. Traffic loading (cyclic).
- 2. Temperature: Most critical at high.
- 3. Un-aged binder: Early in pavement life
- 4. Permanent dislocation of aggregate.
- 5. Accumulate gradually with traffic.

Importance of Air Voids in Rutting: High voids = less traffic to same rut

*Kim, R. *Modeling of Asphalt Concrete* (2009)

MODIFIED

RESEARCH CENTER

MARC

Mechanistic Empirical Rutting Models

Asphalt Mixture Permanent Strain Model

– Witczak et al.

$$\log \varepsilon_{p} = -14.97 + 0.408\log(N) + 6.865\log(T) + 1.107\log(\sigma_{d})$$

$$-0.117\log(\eta) + 1.908\log V_{\text{beff}} + 0.971(V_{a})$$

T =temperature, °F

 σ_d = mechanistically determined deviator stress (psi) in the asphalt layer η = the binder viscosity at 70°F, 10⁶ poise V_{beff} = effective asphalt volume, %

 $V_{a} =$ volume of air voids, %

Mechanistic Empirical Rutting Models MEPDG

Permanent to Resilient Strain Ratio Model

NCHRP 1-37A
$$log\left(\frac{\varepsilon_p}{\varepsilon_r}\right) = B_{\sigma_3}[a_1\beta_{r_1} + a_2\beta_{r_2}log(T) + a_3\beta_{r_3}log(N)]$$

- ε_r = resilient elastic strain calculated at the mid-depth of an HMA sublayer at temperature T
- N = number of axle loads over time interval for a specific axle type
- T = temperature of the HMA at mid-depth, °F
- $B_{\sigma 3}$ = adjustment factor for lateral confinement
- a_i = nonlinear regression coefficients
- β_{ir} = regional calibration factors

$$B_{\sigma^3} = (C_1 + C_2 z) \times 0.3282^z$$

$$C_1 = -0.1039H^2_{HMA} + 2.4868H_{HMA} - 17.342$$

$$C_2 = 0.0172H^2_{HMA} + 1.7331H_{HMA} + 27.428$$

Mechanistic Empirical Rutting Models

Good correlation with Field - Strain Ratio Model -NCHRP 1-37A=> Predicted vs. Estimated

*Kim, R. *Modeling of Asphalt Concrete* (2009)

MARC MODIFIED ASPHALT RESEARCH CENTER

How to Measure Rutting Resistance

Option A: Rheology Option B: Damage Resistance

The focus in Rheology is on Linear Visco-Elasticity: G*, delta

Rheology of Binders and Mixtuers Dynamic Modulus / E*, G*/ Phase Angle, ϕ

ASPHALT

RESEARCH CENTER

MARC

Rheology of Binder and Mixture

Rheology of Binder and Mixture

Need for Bitumen Damage Resistance Characterization

- Linear VE (Small strain) is $\sigma_{\rm f}$ not sufficient (NCHRP 9-10)
- Bitumen damage resistance is very important
- Modified bitumen best in damage resistance

Rutting: Repeated Load Permanent Deformation Test

- Flow Number (FN) at High Temp

Mixture Rutting Resistance Same mix different Binders: SBS, FPE, Hybrid

Binder Rutting Testing – Creep and Recovery

MODIFIED ASPHALT

RESEARCH CENTER

MARC

Mixture Model for *Rutting*

Average of All Aggregates

Binder Damage Resistance

Role of Binders and how to test them

Need for Bitumen Damage Resistance Characterization

- Linear VE is not sufficient Bitumen damage resistance
 - is very important
- Modified bitumen best in damage resistance

The new tests : Creep and Recovery (Multiple Stress Creep & Recovery- MSCR)

MODIFIED

RESEARCH CENTER

MARC

To Separate Non-Recoverable Response (Jnr) Four-Element (Burgers) Model

More viscous (non-recoverable) = more rutting Polymers Can Reduce *Rutting Damage*

MODIFIED

RESEARCH CENTER

MARC

Using Burgers Model to Estimate <u>Jnr</u>

$$J(t) = J_e + J_{de}(t) + J_v(t)$$

= $\frac{1}{G_0} + \frac{1}{G_1}(1 - e^{-tG_1/\eta_1}) + \frac{1}{\eta_{rss}}$

where

MARC

CENTER

- $J_e = elastic compliance,$
- J_{de} = delayed elastic compliance, and

 $J_v = viscous \ compliance => Jnr$

THE UNIVERSITY WISCONSIN MADISON

Steady State

Viscosity

Multiple Stress Creep and Recovery (MSCR) -ASTM 7045-10, AASHTO TP70

- Creep stress:0.1 kPa, 3.2 kPa
- 10 cycles

MARC

CENTER

- 1 sec constant creep stress
- 9 sec zero stress
- Output: Creep compliance (Jnr) and Percent Recovery (%R) at 0.1 kPa, and 3.2 kPa

The New Bitumen Grading System- M332 – PG xx(z)-yy

Advanced Performance Grading System for Qatar – AASHTO MP19

• Direct and effective consideration of Traffic

	Adjusting the Jnr limits Measured at Environmental Grade Traffic Speed - Load Rate		
Traffic Volume – Design ESALs ^a –			
(Million)	Standing ^b	Slow ^c	Standard ^d
0.3 to < 3	Н	Standard	S
3 to < 10	V	$\mathbf{H}_{\mathrm{igh}}$	Н
10 to < 30	E	${f V}_{eryhigh}$	V
≥ 30	E	Extremely high	E

b-Standing Traffic—Average traffic speed is < 20 km/h. ^{*c*} *Slow Traffic*—Average traffic speed >20 to <70 km/h, ^{*d*} *Standard Traffic*—average traffic speed is > 70 km/h.

Mixture Micro-structure: Aggregate Packing effects

Role of Aggregates and how to measure it

Typical Results from FN - Mixtures

Bitumen + aggregate gradation + volumetrics ≠ Performance

MARC ASPHALT RESEARCH CENTER

Can we Measure aggregate structure ? iPas1 ... iPas2 ... (Image Processing and Analysis Software)

- iPas: A tool to identify aggregate structure.
- Give statistics about
 - Packing
 - Connectivity
 - Orientation
 - Spatial segregation

iPas software includes 2-Parts

Aggregate Packing Characterization 2D to represent 3D - Stereology

iPas output used to quantify packing: Aggr. Proximity Index <u>API= Total aggregate to aggregate Proximity length</u>

1 in 1 in

Internal Aggregate Structure (API) Can explain the differences in FN

More Results of Mixture Rutting: Effect of Aggregate Gradation

Validation of Effect of Aggregate Packing and Skeleton

Technologies to Stop Rutting → Damage Resistance Characterization + Imaging

MODIFIED

RESEARCH CENTER

MARC

- Both Binders and Aggregates play a major role in rutting resistance
- Binder damage resistance should be measured correctly (large strain repeated creep)
- Voids can have an effect (but aggregate structure is more important
- Aggregate packing is very important
- Imaging and visualization can help

Same Problems but New Methods to Solve

Acknowledgments

- Conference Organizers
 - -Argentinean Road Association
- YPF organization
 - -Technical Manager Marcela Balige

